
i

TECHNICAL REPORT NO. TR-634
(Revised: 1 June 1999)

Army Standard Platform Object

July 1998

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

ii

iii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing the burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

 July 1998
3. REPORT TYPE AND DATES COVERED

Technical Report

4. TITLE AND SUBTITLE

Army Standard Platform Object
5. FUNDING NUMBERS

6. AUTHOR(S)

Don Hodge, Brad Bradley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Director
U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road
Aberdeen Proving Ground, MD 21005-5071

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-634

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Director
U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road
Aberdeen Proving Ground, MD 21005-5071

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS
UNLIMITED.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

Object-oriented programming offers the potential for increased code reuse,
maintainability, and ease of developing entity-level simulations. Because of these
benefits, the use of object-oriented technologies will increase over time. In order
to prevent duplication of effort and the development of incompatible models, the
Deputy Undersecretary of the Army for Operations Research (DUSA-OR) directed the
development of an Army object management initiative to provide a foundation for Army
object development. This report documents the standard Platform Object that defines
the minimum set of objects and object methods needed for the development of Platform
Objects in models and simulation.

14. SUBJECT TERMS

object oriented programming; modeling and simulation
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION OF
ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

 NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. Z39-18

 298-102

iv

THIS PAGE INTENTIONALLY LEFT BLANK..

v

CONTENTS

Page

LIST OF FIGURES ... iv
ACKNOWLEDGEMENTS .. v
ACRONYM LIST ... vi

1. INTRODUCTION ... 1

2. BACKGROUND ... 2

3. APPROACH .. 3

4. PLATFORM OBJECT INITIAL DESIGN .. 4

5. PLATFORM OBJECT TEST APPLICATION ... 5
5.1 Groundwars 5
5.2 CASTFOREM/COMBAT XXI .. 9

6. PLATFORM OBJECT DESIGN REVIEW .. 14
6.1 OMSC Review .. 14
6.2 WARSIM 2000 Review .. 15
6.3 Combat Services Support Review .. 16

7. FINAL PLATFORM OBJECT DESIGN AND DEFINITIONS 18
7.1 Final Platform Object Design .. 18
7.2 Platform Object Class and Component Definitions. 19

APPENDIXES
A - COMPONENT APPROACH TO OBJECT MODEL STANDARDS FOR
 SIMULATIONS ... A-1
B - WARSIM 2000 CROSSWALK WITH THE OMSC OBJECT MODEL
 STANDARD ... B-1
C - DISTRIBUTION LIST ... C-1

vi

LIST OF FIGURES

 Figure No. Title Page

1 Initial Platform Object Design .. 4
2 Groundwars Platform Class Design .. 5
3 Groundwars Weapon Component Design ... 6
4 Groundwars Sensor Component Design .. 7
5 Groundwars Communications Component Design 7
6 Groundwars Movement Component Design .. 7
7 Groundwars Physical Characteristics Component Design …................. 8
8 Combat XXI Platform Class Design .. 9
9 Combat XXI Weapon Component Design .. 10
10 Combat XXI Sensor Component Design .. 10
11 Combat XXI Movement Component Design .. 11
12 Combat XXI Logistics Component Design ... 11
13 Combat XXI Communications Component Design 12
14 Combat XXI Carrier Component Design .. 12
15 Combat XXI Crew Component Design ... 12
16 Combat XXI Additional Platform Components 12
17 Combat XXI Additional Model Components ... 13
18 OMSC Interim Platform Object Design ... 15
19 OMSC and WARSIM 2000 Platform Object Designs 15
20 OMSC Final Platform Object Design .. 18

LIST OF TABLES

Table No. Title Page

1 Comparison of OMSC and WARSIM 2000 Functional Components ... 16

vii

ACKNOWLEDGEMENTS.

The U.S. Army Materiel Systems Analysis Activity wishes to recognize the
following individuals for their contributions to this report:

Authors: Don Hodge
Brad Bradley

Contributions: Major Leroy Jackson

Technical Reviewers: Charles E. Abel
Wilbert J. Brooks

viii

ACRONYM LIST.

AMSAA Army Materiel Systems Analysis Activity
AMSMPWG Army M&S Management Program Working Group
ASTARS Army Standards Repository System

CAA Concepts Analysis Agency
CASTFOREM Combined Arms Task Force Evaluation Model
CSS Combat Service Support

DUSA(OR) Deputy Undersecretary of the Army for Operations Research

JWARS Joint Warfare Simulation

ModSAF Modular Semi-Automated Forces

NSC National Simulation Center

OMSC Object Management Standards Category
OMWG Object Management Working Group
OOP Object Oriented Programming

SAMSO Standard Army Modeling and Simulation Object
SNAP Standards Nomination and Approval Process
STRICOM Simulation, Training, and Instrumentation Command

TRAC-FLVN TRADOC Analysis Center Ft. Leavenworth
TRAC-MTRY TRADOC Analysis Center - Monterey
TRAC-WSMR TRADOC Analysis Center -White Sands Missile Range
TRADOC U.S. Army Training and Doctrine Command

WARSIM Warfighter Simulation

1

ARMY STANDARD PLATFORM OBJECT

1. INTRODUCTION

This report documents the development of the Army standard
Platform Object. For this effort, the definition of a platform
encompasses any item that can be treated as an entity. Examples
of this definition include vehicles (tanks, trucks, helicopters,
etc.), individual humans, and anything else that can be treated
as an individual item (i.e., air defense missiles or remotely
emplaced sensor packages, etc.). These types of entities are
typically used in simulations where there is an interest in
representing the behavior, characteristics or performance of the
individual element versus representing the aggregate or
composite behavior, characteristics or performance of a
collection of these entities.

2

2. BACKGROUND

Many of the current Army and Joint model development
efforts have embraced the use of Object Oriented Programming
(OOP) for their model development efforts. As a result, there
has been a proliferation of competing object models. In 1QFY97,
the Deputy Undersecretary of the Army for Operations Research
(DUSA(OR)) formed an Object Management Working Group (OMWG) to
propose a policy addressing the need for standards associated
with Army M&S objects. The proposed policy developed by the
OMWG recommended that the Army focus on a high-level object
class structure independent of any specific simulation
environment. This would allow M&S developers to tailor the
high-level object standards to their specific applications
through lower-level classes/ instantiation that extend the
standards to a specific M&S requirement. The overall impact in
the development of standard abstract objects will be to organize
future M&S along a common object structure to support
interoperability, object reuse, and community understanding of
the M&S. The proposed policy was briefed by the OMWG to the
DUSA(OR) and was accepted in principle. AMSO subsequently
formed the Object Management Standards Category (OMSC) in April
1997 to initiate the proposed policy. The OMSC mission is to:

• develop abstract objects for Army M&S functions,
• identify the minimum set of object methods/public data

associated with the object function, and
• link the object methods to standard algorithms/data

sources obtained from the other AMSO standard categories.

The OMSC is comprised of M&S practitioners to include those from
the following agencies:

• Army Materiel Systems Analysis Activity (AMSAA) -- serves
as the OMSC Coordinator;

• Concepts Analysis Agency (CAA);
• National Simulation Center (NSC);
• TRADOC Analysis Center - Ft. Leavenworth (TRAC-FLVN);
• TRAC- Monterey (TRAC-MTRY),
• TRAC-White Sands Missile Range (TRAC-WSMR); and
• Simulation, Training, and Instrumentation Command

(STRICOM).

3

3. APPROACH

During the initial stages of developing a policy on
objects, AMSO funded the U.S. Army Training and Doctrine Command
(TRADOC) Analysis Center in Monterey, California (TRAC-MTRY) to
perform the ‘Standard Army Modeling and Simulation Object
(SAMSO) Study’1. The study proposed an approach to object
development based on object composition. The OMSC reviewed the
SAMSO general approach to object development and adopted it for
use in developing Army Standard objects. A paper describing the
component approach to model development is provided in
Appendix A.

As a part of the SAMSO study, the study proponents developed
sample platform and unit objects. The OMSC selected the sample
platform object design for use as the initial prototype for
developing a standard Army Platform Object. To explore the
capability of the Platform Object to address expected M&S
platform implementations, the OMSC conducted a number of M&S
test applications. The simulations chosen for the test
applications were the AMSAA Groundwars simulation and the TRAC-
WSMR CASTFOREM/ COMBAT XXI simulation. The results of these
test applications were used to refine the Platform Object.
Additionally, to gain a broader perspective on the application
of the draft Platform Object to other M&S domains, an overview
of the revised draft Platform Object was provided to the Army
M&S Management Program Working Group (AMSMP WG) and the Army M&S
Standard Categories for review. Comments were collected and
reviewed to determine if any changes to the Platform Object were
needed to address differing M&S requirements. Based on these
reviews, an updated version of the draft Platform Object was
developed and submitted to the Standards Nomination and Approval
Process (SNAP) and the Army Standards Repository System
(ASTARS).

1 Buss, Arnold, and Leroy Jackson (September 1997), “Standard Army Modeling and Simulation Objects: Interim Report”, US
Army TRADOC Analysis Center – Monterey.

4

4. PLATFORM OBJECT INITIAL DESIGN

An output of the SAMSO Study was a draft Platform Object
and Unit Object. (The Unit Object will be described in a
separate report). Members of the SAMSO study team reviewed
documentation from a number of existing and developing Army
models. The models reviewed included: Janus; Joint Warfare
Simulation (JWARS); Modular Semi-Automated Forces (ModSAF); and
Warfighter Simulation (WARSIM) 2000. Based on this research,
the study team identified a set of components that were common
to the platforms represented in the models.2 This Initial
Platform Design (IPD) is shown in Figure 1.

Figure 1. Initial Platform Object Design.

2 Dudgeon, Douglas E. (September 1997) “Development of Standard Platform-Level Army Object Model, MS Thesis.
Department of Operations Research, Naval Postgraduate School.

0+ 0+ 0+ 0+ 0+ 0+ 0+
SensorSensor

status

maxRange

activate ()

deactivate()

reportTargets()

MovementMovement

status

velocity

fuelAmount

destination

moveTo()

WeaponWeapon

status

maxRange

load()

aim()

fire()

SupplySupply

status

type

receive()

expend()

Communications

status

net

sendMessage()

receiveMessage()

CarrierCarrier

status

capacity

load()

unload()

CrewCrew

status

quantity

PlatformPlatform

status

location

side

assessDamage ()

5

5. PLATFORM OBJECT TEST APPLICATION

The basic philosophy behind the development of any standard
object is its use as a building block in the development of
model-specific objects. In order to determine the utility of
the proposed platform standard object, the IPD was used to
develop sample platform objects for a number of existing entity
level simulations. The models addressed by the IPD were the
AMSAA Groundwars simulation, TRAC-WSMR CASTFOREM/COMBAT XXI
simulation, and the NSC WARSIM 2000 simulation.

5.1 Groundwars Platform Object Implementation.

The first model used to test the IPD was the Groundwars
model developed and used at the Army Materiel Systems Analysis
Activity (AMSAA). Groundwars is a few-on-few, direct-fire
ground combat model that simulates a simplified scheme of
maneuver using statistical terrain. The model was designed to
investigate the impact of changes to a weapon system’s
capabilities on the outcome of a small battle. Examples of the
types of system capabilities that Groundwars can examine are:
changes in the lethality of a munition; changes in the target
acquisition capabilities of a sensor; and changes in the
delivery accuracy of a munition.

On 11-12 October 1997, Major Jack Jackson of TRAC-MTRY, Don
Hodge (AMSAA), and Gary Comstock (AMSAA), met to apply the IPD
to the development of Groundwars-type ground vehicle objects.
The resulting design contained six components, with five of the
components based on the IPD. Figures 2-6 show the composition
of each of these components compared to the appropriate IPD
component. Figure 7 shows the composition of the new component
identified as needed for a Groundwars type of model.

Initial Platform Design

PlatformPlatform

status

location

side

assessDamage ()

Groundwars Platform Design

 Platform Platform

status

location

side

assessDamage ()
assessImpact()
engageTarget()
disengageTarget()

6

Figure 2. Groundwars Platform Class Design.

1

Figure 3. Groundwars Weapon Component Design.

Initial Platform Design

Weapon

status

maxRange

load()

aim()

fire()

Groundwars Platform Design

Weapon/Munition .
maxRange
wpnType
roundsOnBoard
haltToFire: Boolean
disengageTactic
roundsPerTgt
laserRangeFinder: Boolean
probabilitySense
timeOfFlight
fixedTimeBetweenRounds
probabilityOfReliability
MedianTimeSubRounds

load()
fire()

Missile
ifPoped : Boolean
keepFixDuringReload : Boolean
numberRoundsPod
timeReloadPod
probabilityAbortSmoke
probabilityAbortLOS

 KE
shotsBeforeJockey
jockeyTime

 Burst
rateOfFire
numberRoundsPerBurst
usesRangingin: Boolean

CommandToLOS FFireAndForgetrget
 lockOnBeforeLaunch : Boolean

Multiple
numberNearSimultaneous
ifMultipleEngagement
maxTimeMultipleDetect
maxTargetMultipleDetect
allowPartialReload: Boolean

Single

LockOnBeforeLoad
maxLockOnTries
batteryCoolTime
probabilityLockOn
meanTimeLockOn
maxTimeLockOn

2

Figure 4. Groundwars Sensor Component Design.

Figure 5. Groundwars Communications Component Design.

Groundwars Platform Design

Sensor

probabilityFalseTgt:Defilade

probabilityFalseTgt:Exposed
maxTgtDetected
probabilityFlashDetected

determineLOS()

Initial Platform Design

Sensor

status

maxRange

activate ()

deactivate()

reportTargets()

RadarSensor

rain: Boolean
clutter: Boolean

 OpticalSensor

detectionListWideFOV
detectionListNarrowFOV
type
dataType
dataSet
sensorToPlatformLOS
horizontalFOS
verticalFOS
horizontalNarrowFOV
verticalNarrowFOV
horizontalWideFOV
verticalWideFOV
magnificationWideFOV
magnificationNarrowFOV
linePairNarrowFOVstationary
linePairNarrowFOVmoving
linePairWideFOVstationary
linePairWideFOVmoving

Initial Platform Design Groundwars Platform Design

Communications

net

sendMessage()

receiveMessage()

Communications

status

net

sendMessage()

receiveMessage()

Initial Platform Design Groundwars Platform Design

Movement

maxVelocity

velocity

destination

jockeyTime

acceleration

deceleration

pauseinDefilade: Boolean

whenEmptyTime

whenFKilledTime

moveTo()

Movement

status

velocity

fuelAmount

destination

moveTo()

3

Figure 6. Groundwars Movement Component Design.

4

Figure 7. Groundwars Physical Characteristics Component Design.

Overall, the IPD standard components were found to be
adaptable and adequate to meet functional requirements found in
developing ground vehicle objects that could be used in a
Groundwars-type model. Most of the additional details added to
the IPD components for this application, as shown in the form of
attribute data, were model specific, i.e., the additions were
required to support the specific functions of the Groundwars
model.

While many of the Groundwars-specific additions to the IPD
fit within the general philosophy proposed by the OMSC, there
were two areas that caused some concern. The first was the
requirement to provide a description of the physical
characteristics of the ground vehicles used in Groundwars.
These platform physical characteristics are used by the target
acquisition sensors to determine target detection and
acquisition. While there were sensor objects in the IPD, there
were no components in the IPD structure to provide target
signature information.

The second area of concern dealt with the model cognitive
decision-making processes. In almost all simulations there are
certain decisions and/or choices that are required to allow the
simulation to execute according to design. For combat
simulations, an example of a required decision would be the
rules of engagement used by a firing unit. These types of
decisions revolve around deciding, for a given target class at a
given range, which of the available munitions to fire. The IPD
structure, as used during these sample object development
efforts, did not contain a component which would logically host
these types of decision processes.

Groundwars Platform Design

PhysicalCharacteristics

HullDimensions

TurretDimensions

RadarXSection

OpticalContrast

ThermalContrast

ActiveCounterMeasures

useCountermeasure()

5

6

5.2 CASTFOREM/COMBAT XXI

The second model used to test the IPD was the Combined Arms
Task Force Evaluation Model (CASTFOREM) developed by the TRADOC
Analysis Center located at the White Sands Missile Range in New
Mexico (TRAC-WSMR). CASTFOREM is a combined-arms brigade and
below combat simulation. The model uses approved tactics and
doctrine exercised on digital representations of real terrain to
assess impact of improved weapon systems on battle outcome. At
this time TRAC-WSMR is in the process of developing the follow-
on model to CASTFOREM called COMBAT XXI.

On 15-16 October 1997, Major Jackson and Don Hodge met with
Donna Vargas, Carol Denney, Chad Mullis, Dave Hoffman, Joe
Agular, and Doug Mackey3 to apply the IPD to the development of
platform objects for use in a CASTFOREM/COMBAT XXI-type model.
The resulting design was composed of 17 components, with eight
of these components coming from the IPD. Figures 8-15 show the
composition of the components that came from the IPD. Figure 16
portrays the additional components identified during this
effort. Figure 17 depicts other objects, independent of the
platform object, that were identified as necessary for a Combat
XXI type of model.

Figure 8. Combat XXI Platform Class Design.

3 The individuals listed here are members of the original CASTFOREM development team as well as members of the
COMBAT XXI development team.

Initial Platform Design

Platform

status

location

side

assessDamage ()

COMBAT XXI Platform Design

 Platform

status

location

side

assessDamage ()

PlatformComponent

status

preemptOperations()
suspendOperations()
resumeOperations()

7

Figure 9. Combat XXI Weapon Component Design.

Initial Platform Design

Weapon

status

maxRange

load()

aim()

fire()

COMBAT XXI Platform Design

Weapon

load()
fire()
aim()
maxRange()
minRange()

Guided

guideMunition()

Unguided

COMBAT XXI Platform Design

 Sensor

maxRange

orientation

fieldOfView

fieldOfRegard

activate ()

deactivate()

setFieldOfRegard()
setFieldOfView()

Initial Platform Design

Sensor

status

maxRange

activate ()

deactivate()

reportTargets()

AlertSensor

reportEncounter()

AcquisitionSensor

reportTargets()
lookAt()

RadarAlarm LaserAlarmAcousticAlarm

ChemicalAlarm OpticalAlarmOpticalSensor

changeFieldOfView()

AcousticSensor RadarSensor

SesmicSensor

8

Figure 10. Combat XXI Sensor Component Design.

9

Figure 11. Combat XXI Movement Component Design.

Figure 12. Combat XXI Logistics Component Design.

Initial Platform Design COMBAT XXI Platform Design

 Movement

velocity

acceleration

fuelAmount

destination

rateOfMarch

ignoreTerrain: Boolean

moveTo()

followRoute()

planRoute()

setVelocity()

setRateOfMarch()

moveToDefinedPoint()

Movement

status

velocity

fuelAmount

destination

moveTo()

AirMovement

climbRate

takeOff()
land()

GroundMovement

crossCountry: Boolean

FixedWingAirMovement RotaryWingAirMovement

NoeHeightAboveGround

hover()
changeMaskState()

Initial Platform Design COMBAT XXI Platform Design

Logistics

type

receive()

expend()

Supply

capacityOnHand

Supply

status

type

receive()

expend()

Ammunition

10

Figure 13. Combat XXI Communications Component Design.

Figure 14. Combat XXI Carrier Component Design.

Figure 15. Combat XXI Crew Component Design.

Figure 16. Combat XXI Additional Platform Components.

Initial Platform Design COMBAT XXI Platform Design

Communications

net

sendMessage()

receiveMessage()

Communications

status

net

sendMessage()

receiveMessage()

Initial Platform Design COMBAT XXI Platform Design

Carrier

capacity

load()

unload()

remainingCapacity()

Carrier

status

capacity

load()

unload()

Initial Platform Design COMBAT XXI Platform Design

 Crew

quantity

dismount()

mount()

Crew

status

quantity

PhysicalCharacteristics

targetClass

turretDimensions

hullDimensions

turretOrientation

hullOrientation

opticalSignature

thermalSignature

radarSignature

acousticSignature

lightStatus

reportDimensions()

 CSS

rearm()
refuel()
repair()
treatCasualty()

DefensiveCounterMeasure

activateCounterMeasure()

CombatIdentificationDevice

challenge()
respond()

SituationalAwareness

reportClassification()

Mission

11

Figure 17. Combat XXI Additional Model Components.

As with the Groundwars experience, the IPD standard
components were found to be adaptable and adequate to meet the
functional requirements found in developing platform objects for
a CASTFOREM/COMBAT XXI-type model. Most of the additional
details added to the IPD components for this application were
model specific. The two areas of concern identified in the
earlier Groundwars effort (i.e., physical descriptions and
decision-making processes) were also experienced in this effort.

EngineerOperations

construct()

destroy()

emplace()

recover()

attach()

detach()

BattlePosition

side
firingPositionList
entryPoint
exitPoint

ManeuverControlPoint

location
type

FiringPosition

12

6. PLATFORM OBJECT DESIGN REVIEW

After the test application using the Groundwars and
CASTFOREM/COMBAT XXI simulations, the OMSC met to agree on
required modifications to the draft Platform Object. In
addition, the modified draft design for the Platform Object was
provided to a number of groups throughout the Army for review
and comment. These groups included the Army Model and
Simulation Management Program Working Group (AMSWG) and all of
the other Army Model and Simulation Standards Category
Committees. The results of the review included specific written
input from the WARSIM simulation developers and the logistics
community. The results of the OMSC review along with a summary
of the other comments are provided in this section.

6.1 OMSC Review

On 28-29 October 1997, the OMSC committee met to review the
results of the two test object design efforts. The members
present for this meeting were Brad Bradley (Chairman), Don Hodge
(AMSAA), John Shepherd (CAA), Sean MacKinnon (NSC), Mike Hannon
(TRAC-FLVN), Major Jack Jackson (TRAC-MTRY), Carol Denny and
Donna Vargas (TRAC-WSMR), and Ben Paz (STRICOM). After the
review of the two design efforts, the OMSC modified the IPD in
the following ways:

1. Added a new component (i.e., PlatformFrame) to provide a
description of the physical characteristics of each
platform,

2. Added a new component (i.e., PlatformComponent) as a
super component to provide for common functions found in
each of the identified functional components. These
common functions were status and type,

3. Changed the name of the Supply component to Logistics
and identified sub-components in order to add a place
for maintenance functions,

4. Changed the attribute data found in the IPD to methods
that would return the attribute data, and

5. Added a number of new methods to the existing
components.

The interim design is shown in Figure 18.

13

14

Figure 18. OMSC Interim Platform Object Design.

6.2 WARSIM 2000

Representatives from the National Simulation Center (Sean
MacKinnon and Kevin Gippon) conducted a comparison between the
interim Platform Object and Unit Object and similar objects
being developed for the WARSIM 2000 program (Appendix B).
Figure 19 shows the WARSIM 2000 platform object structure.

Platform_Component

Supply

Equipment_Platform

Personnel_Platform

Communications_Equipment Weapon

Movement_Platform Cargo_Container Sensor

Equipment

Simulated_Physical_Thing

Life_Form_Platform

Animal_Platform

Power_Supply Mission_Specific_Devices

Computer_System

0+ 0+ 0+ 0+ 0+ 0+ 0+

Sensor

getmaxRange()

getOrientation()

getContacts()

activate ()

deactivate()

Weapon

getmaxRange()

load()

aim()

fire()

Carrier

load()

unload()

getRemainingcapacity()

getTotalcapacity()

getQtyOnHand()

 Crew

getquantity()

Communications

getnet()

setnet()

sendMessage()

receiveMessage()

PlatformFrame

getSize()

Logistics

receive()

FrameComponent

getSize()

Platform

getType()

getStatus()

getLocation()

getSide()

assessDamage()

PlatformComponent

getType()

getStatus()

0+

0+

Supply

getRemainingCapacity()

getTotalCapacity()

getQtyOnHand()

expend()

Maintenance

0+0+

Movement

getvelocity()

changeVelocity()

moveTo()

15

Figure 19. WARSIM 2000 Platform Object Design.

16

At first glance the two designs appear to be different.
This apparent difference is attributable to the different
assumptions made in developing each design. The WARSIM 2000
object model was designed to mirror the Operational Requirements
Document developed for the WARSIM 2000 program. The interim
standard Platform Object is oriented around physical processes
and functions. Table 1 provides a comparison between the
functions performed by the components of each design. From this
table we can see that the functions provided by each design are
comparable. There are some differences related to the location
of some functions and to the nomenclature used to describe some
of the functions. Based on this review, no changes were
recommended to the interim Platform Object.

Table 1. Comparison of OMSC and WARSIM 2000 Functional
Components.

3. OMSC 4. WARSIM
5. 6.
7. Platform 8. Equipment_Platform
9. Platform Component 10. Platform Component
11. Logistics
12. Maintenance

13. Attributes and Methods

14. Supply 15. Supply
16. Carrier 17. Cargo-Container
18. Communications 19. Communications-Equipment
20. Crew 21. Personnel-Platform
22. Movement
23. PlatformFrame
24. FrameComponent

25. Movement-Platform

26. Sensor 27. Sensor
28. Weapon 29. Weapon

6.3 Combat Service Support (CSS)

As a result of discussions between the OMSC and Logistics
SC members at the May 1998 Army M&S Standards Workshop, the OMSC
was provided a list of the minimum CSS requirements that are
desired to be represented in combat simulations. The list is
comprised of the following sets:

ARM
 - Conduct ammo transfer operations
 - Account for direct and indirect fire ammo by type

17

FUEL
 - Conduct fuel transfer operations, including Refuel On Move
 - Provide visibility of fuel quantities on hand

MAN & MEDICAL
 - Conduct medical evacuation and treatment operations

- Generate types of combat and Disease and Non Battle Injury
 (DNBI) casualties

FIX
 - Conduct maintenance operations
 - Conduct evacuation and recovery operations
 - Generate combat and reliability failures

After reviewing these requirements and the interim platform
design, the OMSC addressed each as follows:

a. The Supply Sub-Component of the Logistics Component of
the interim Platform Object addresses the following CSS
elements:

 ARM - Account for direct and indirect fire ammo by type
 FUEL - Provide visibility of fuel quantities on hand

b. Addition of the method "transfer()" to the Supply Sub-
Component of the interim Platform Object will address the
following CSS elements:

 ARM - Conduct ammo transfer operations
 FUEL - Conduct fuel transfer operations, including Refuel
 On Move

c. Add the method "conduct_maintenance" to the Maintenance
Sub-Component of the Logistics Component of the interim Platform
Object to address the following CSS elements:

 MAN & MEDICAL - Conduct medical treatment operations
 FIX - Conduct maintenance operations

d. The Carrier Component of the interim Platform Object
addresses the following CSS elements:

 MAN & MEDICAL - Conduct medical evacuation operations
 FIX - Conduct evacuation and recovery
operations

18

e. Generation of combat casualties and combat damage
should be addressed by the appropriate methodologies in the
assessDamage() method of the interim Platform Object.

19

7. FINAL PLATFORM OBJECT DESIGN AND DEFINATIONS

7.1 Final Platform Object Design

Figure 20 shows the final design for the Platform Object.
This design is based on the OMSC review documented in this
report and input provided by the M&S community. This design was
nominated in the Standards Nomination and Approval Process for
placement into the Army Standard Repository System.

Figure 20. OMSC Final Platform Object Design.

FrameComponent

getSignature()

0+ 0+ 0+ 0+ 0+ 0+ 0+

Sensor

getmaxRange()

getOrientation()

getContacts()

activate ()

deactivate()

Weapon

getmaxRange()

load()

engageTarget()

Carrier

load()

unload()

getRemainingcapacity()

getTotalcapacity()

getQtyOnHand()

 Crew

getquantity()

Communications

getnet()

setnet()

sendMessage()

receiveMessage()

PlatformFrame

getSignature()

Logistics

receive()

Platform

getType()

getStatus()

getLocation()

getSide()

assessDamage()

PlatformComponent

getType()

getStatus()

0+

0+

Maintenance

conductMaintenance()

0+

Supply

getRemainingCapacity()

getTotalCapacity()

getQtyOnHand()

expend()

transfer()

0+

Movement

getvelocity()

changeVelocity()

moveTo()

20

7.2 Platform Object Class and Component Definitions

A detailed description for each of the components and
methods contained in the platform object standard definition is
provided below.

Class Platform. A platform can be any entity of interest in the
model. Examples include vehicles of all types, individuals/
persons, individual systems (i.e., radar systems), a missile,
etc.
Public Methods:

getType(): Returns the type designation for the platform.
getStatus(): Returns the platform status. The status is
typically an enumeration of the standard kill categories
(M, F, MF, or K). It can simply be either alive/dead
(1/0). It can be derived from the component status.
getLocation(): Returns the current platform location.
getSide(): Returns the faction or coalition for the
platform. There is no implied enmity between sides.
assessDamage(): Used to instruct the platform to calculate
the damage caused by another object.

Class PlatformComponent. A platform is partitioned into logical
components so that the modeler can compose a platform from the
components. Components may be extended through inheritance.
All of the components listed below will inherit the following
two methods from this class.
Public Methods:

getType(): Returns the component type designation.
getStatus(): Returns the status of a component; status is
typically either functional or nonfunctional (1/0).

Class Sensor. This element models the component of a platform
that detects other platforms. Examples of sensors include crew
vision, infrared sights and radar.
Public Methods:

getMaxRange(): Returns the maximum range of the sensor
(may be used to reduce the area to be searched).
getOrientation(): Returns the direction of sensor
orientation.
getContacts(): Used to query the targets currently visible
to the sensor component.
activate(): Used to place the sensor in an active mode.
deactivate(): Used to place the sensor in an active mode.

21

Class Weapon. Used to describe the weapon systems on the
platform.
Public Methods:

getMaxRange(): Return the max range for specified
munition.

load(): Used to load a munition (this creates the
weapon/munition pair).
engageTarget(): Used to initiate the weapon-firing event.

Class PlatformFrame. The component contains the physical
description of the platform. This may be a detailed model, but
typically is data required by sensors to acquire/detect the
platform. Examples of the physical data are the visual
signature, thermal signature, acoustic signature and cross
sectional area. Platform orientation and other descriptions
also belong here.
Public Methods:

getSignature(): Returns the signature of the target
appropriate for the type of sensor being used.

Class FrameComponent. FrameComponents can be used to describe
individual parts of the PlatformFrame. Providing separate
descriptions for both the hull and turret of a tank is one use
of this component.
Public Methods:

getSignature(): Returns the signature of the target
component appropriate for the type of sensor being used.

Class Movement. This class describes the movement capabilities
of a platform.
Public Methods:

getVelocity(): Returns the current velocity (direction of
movement and rate) of the platform.
changeVelocity(): Used to request a change in velocity.
moveTo (): Used to order the platform to move directly to
a location.

Class Logistics. This component is intended to capture or
represent the internal logistics capability and/or requirements
of the platform.
Public Methods:

receive(): Used to increment the quantity of this logistic
component.

22

Class Supply. This component is intended to represent
individual classes of supply used by the platform. Ammunition
could be one example of this class.
Public Methods:

getRemainingCapacity(): Returns the remaining capacity for
this supply component.
getTotalCapacity(): Returns the total capacity for this
supply component.
getQuantityOnHand(): Returns the quantity of this supply
that is on hand.
expend(): Used to expend a quantity of the supply
component.
transfer(): Used to transfer a quantity of an on hand
supply component to another platform.

Class Maintenance. This component is intended to represent
maintenance actions/requirements of the platform. Since the
platform object can be used to describe both systems and people
the action can also be used to describe the medical treatment of
injuries.
Public Methods:

conduct_maintenance(): Used to perform maintenance action
on platform.

Class Crew. This component is intended to represent individual
crew activities for a platform.
Public Methods:

getQuantity(): Returns the number of crewmembers on the
platform.

Class Communications. Provides the platform the ability to send
and receive messages.
Public Methods:

getNet(): Returns the collection of objects capable of
exchanging messages.
getNet(): Used to add the platform to the collection of
objects capable of exchanging messages.
sendMessage(): Used to send a message on the net.
receiveMessage(): Used to receive a message from the net.

Class Carrier. This component allows the platform to carry
other objects. Examples of items that could be carried include
other platforms, individuals (i.e., non-crew), and supplies.
Public Methods:

load(): Used to load objects on the carrier.
unload(): Used to unload objects carried.

23

getRemainingCapacity(): Return the number of additional
objects of this type that can be loaded.
getTotalCapacity(): Return the total number of objects of
this type that can be carried.
getQtyOnHand(): Returns the number of this type on hand.

24

THIS PAGE INTENTIONALLY LEFT BLANK.

A-1

APPENDIX A

A-2

THIS PAGE INTENTIONALLY LEFT BLANK.

A-3

A Component Approach to Object Model Standards for
Simulation

Major Leroy A. Jackson
Operations Research Analyst

U.S. Army TRADOC Analysis Center—Monterey
(408) 656-4061

jacksonl@mtry.trac.nps.navy.mil

Summary. Object models are an important feature of the United States Department of
Defense (DoD) High Level Architecture (HLA) and the Defense Modeling and
Simulation Office (DMSO) Conceptual Model of the Mission Space (CMMS). Currently,
all major DoD simulations under development use object-oriented methodologies. The
major benefits of object-oriented programming include software reuse, improved
maintainability, interoperability, and rapid prototyping. A set of standard objects is
needed to establish consistency among future Army models and simulations. This
paper describes a component approach proposed for object model standards
development.

1. INTRODUCTION

This paper describes a component approach for object-oriented modeling and design
which has been adopted for standards development in the U.S. Army modeling and
simulation community. This design approach directly supports the goals for developing
object modeling standards by fostering model reuse and improving model
interoperability.

2. BACKGROUND

In May 1997, the U.S. Army Training and Doctrine Command (TRADOC) Analysis
Center (TRAC) in Monterey, California (TRAC—Monterey) began a study sponsored by
the Army Modeling and Simulation Office (AMSO) to support standards development for
Army modeling and simulation objects. [1] The study team was led by a military analyst
at TRAC—Monterey and included a professor and two graduate students from the
Operations Research Department of the Naval Postgraduate School. The study
advisory group included senior analysts from the major Army analytical agencies. The
team examined selected models from existing and future simulations under
development in order to provide examples and insights to support object standards
development. The team also developed an approach to object model standards
development, drafted sample standards for platforms (entities) and units, and drafted
sample guidelines for the use of standard objects. The study team determined that
object model standards would focus on high-level abstract classes containing a minimal,

A-4

essential set of class methods. Rather than specify standard attributes for classes, get
and set methods would signify the data content of standard objects. An important
aspect of the study team recommendations was the component approach to object
model standards.

3. APPROACHES TO REUSE

The two main approaches to reuse in object oriented designs are class inheritance and
object composition. [2&3] Each approach has distinct advantages and disadvantages.

3.1 Inheritance

Inheritance allows subclasses to extend and specialize a parent class by adding data
and methods, and by replacing the method implementation of the parent class with a
new implementation. Inheritance is straightforward since it is directly supported by
object oriented languages. General classes are placed higher in the inheritance
hierarchy and more specialized objects lower, so several subclasses may reuse the
parent class. Inheritance, however, breaks encapsulation by exposing the parent class
implementation to its subclasses. Implementation changes in the parent class often
necessitate changes in subclasses. Issues of multiple inheritance and the requirement
for compile-time binding further dilute the value of inheritance for reuse. Inheritance
promotes implementation dependencies. Despite some minor disadvantages,
inheritance is an extremely important feature in object oriented systems. Inheritance of
abstract classes provides common protocols or interfaces in an object-oriented design.
This technique ameliorates some of the pitfalls in the use of inheritance.

3.2 Object Composition

Object composition is the construction of a class using instances of other classes as
components. Because component classes are accessed through their interface (public
methods), encapsulation is not broken and there are significantly fewer implementation
dependencies. Object composition is, however, more difficult. It requires that
component classes have well defined interfaces that promote reuse. In addition,
objects must respect these interfaces since no implementation details are exposed.
Finally, object composition proliferates numerous small component classes since each
component class must focus on relatively few tasks. This often requires many
interrelationships among the component classes that would normally be encapsulated in
one larger class.

A-5

3.3 The Component Approach to Standards

The component approach to standards favors object composition over class inheritance,
but exploits the advantages of both approaches. With the component approach,
classes of interest are constructed by selecting and implementing abstract component
classes. Component classes are implemented and possibly extended through
inheritance. The principle advantage of the component approach to standards over
alternative approaches is it focuses on the development of standard interfaces rather
than the construction of a single monolithic class hierarchy. If a single class interface
supports several different implementation schemes, then the goal of “plug and play”
software components is achieved. For example, if the same method signature (set of
parameters required to invoke the method) supports several attrition schemes
(Lanchester, Bonder-Ferrel etc.) then it is possible to substitute one attrition algorithm
for another without making other changes in the simulation.

4. STANDARD M&S OBJECTS

This section provides examples of standard modeling and simulation (M&S) objects
developed using the component approach and discusses the problem of determining
the appropriate level of detail for standards using the component approach.

4.1 Location Class Example

The notion of location is fundamental to most military simulations. There are numerous
coordinate systems used in simulation; each is appropriate for some simulations and
not suitable for others. A common, abstract location object can foster interoperability
among simulations that use different coordinate schemes. In this example (see next
page), the Location class abstracts the concept of location by providing a method to
calculate the distance between locations and to convert to an unspecified standard
location scheme. The Location class has two standard subclasses, Local and
Geocentric, which illustrate the two main competing coordinate schemes. Each
provides location through get methods. [4] The Location class is powerful and flexible.
Suppose one has a simulation that uses a network of arcs and nodes. The distance
between nodes is stored in a table and the distance from a node along an arc is
calculated based on the fraction of the arc traversed at the time a distance is requested.
The simulation developer conforms to the standard by simply subclassing the Location
class and implementing its methods.

A-6

|

Location Class Hierarchy

4.2 PlatformComponent Example

Entity level simulations of combat generally have a notion of platform or entity upon
which most militarily significant actors from individual combatants to tanks to aircraft are
based. While the details vary significantly among various simulations, there are
common aspects of all platforms in almost all entity level simulations. The standard
platform components are Location, Communications, Movement, Sensor, Weapon,
Carrier, Crew, PlatformFrame and Logistics (with Supply and Maintenance subclasses).
These components are subclasses of the PlatformComponent class that provides
getType and getStatus methods to all components. (The interested reader can refer to
[4,5&9] for the details of the platform components.) A simulation developer composes
platforms in an entity-level simulation using zero or more of each of components as
appropriate. Implementation details are left to the developer, but each component
provides a standard interface into a significant aspect of the entity as illustrated by the
Location class described above. The standard platform components are flexible. The
simulation developer uses only the components required in the simulation. If, for
example, the crew is not modeled, then that component is omitted. There is no
restriction on the number or type of weapons, sensors or communications systems on
the platform.

4.3 Levels of Detail for Standards

The component approach does not solve the problem of determining the appropriate
level of detail for standard classes, but it provides a suitable context for debate on this
issue. The study team used several general rules to determine if a method belonged in
a standard class. The primary rule was that the method be essential to support a
function found in almost all simulations where the component would be found. The
study team made a conscious effort to err on the side of proposing minimal standards to
avoid creating a large burden for the simulation developer. The shared vision was of
abstract components as the basis for standards. In the approach described, the

Location

distanceFrom()
convert()

Local

GetXCoordinate
GetYCoordinate
getZCoodinate

GeoGeocentric

getLattitude
getLongitude
getAltitude

A-7

abstract components are sufficient to assemble a platform that represents the abstract
tank. Further refinement would be required to produce a generic tank and still more
refinement to produce a detailed model of an actual tank. Each level is a possible
standard, but the fraction of simulations which might support the more detailed
standards is rather small.

5. CONCLUSION

The U.S. Army modeling and simulation community is reviewing standard component
models for platform and unit objects which evolved from the study. The Object
Management Standards Coordinating Committee has proposed a general framework for
object model development and is actively developing standard component models for a
variety of other significant objects found in ground combat simulations. The component
approach to object modeling promotes reuse of models and improves model
interoperability. It focuses on the development of a standard object interface which
consists of the minimum, essential set of abstract class methods in a component.

6. ACKNOWLEDEMENTS

This work was sponsored by the Deputy Undersecretary of the Army for Operations
Research through the auspices of the U.S. Army Modeling and Simulation Office. I am
particularly indebted to Professor Arnold Buss of the Naval Postgraduate School for his
keen insights and tremendous contributions to the study.

7. ABOUT THE AUTHOR

Major Leroy A. Jackson is an Army officer with over 20 years of enlisted and
commissioned service. He graduated with a BA in Mathematics from Cameron
University in 1990 and with an MS in Operations Research from the Naval Postgraduate
School in 1995. He is currently an operations research analyst at the U.S. Army
Training and Doctrine Command (TRADOC) Analysis Center (TRAC) Research
Activities in Monterey, California and continues graduate studies in operations research
at the Naval Postgraduate School.

8. REFERENCES

[1] Jackson, Leroy A. (April 1997) Standard Army M&S Objects Study Plan, US Army
TRADOC Analysis Center—Monterey.
[2] Gamma, Erich, Richard Helm, Ralph Johnson and John Vlissides (1995), Design
Patterns: Elements of Reusable Object-Oriented Software Reuse, Addison-Wesley.
[3] Jacobson, Ivar, Magnus Christerson, Patrik Jonsson and Gunnar Overgaard (1995),
Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley.

A-8

[4] Buss, Arnold, and Leroy Jackson (September 1997), Standard Army Modeling and
Simulation Objects: Interim Report, US Army TRADOC Analysis Center— Monterey.
[5] Dudgeon, Douglas E. (September 1997) Development a Standard Platform-Level
Army Object Model, MS Thesis, Department of Operations Research, Naval
Postgraduate School.
[6] Cotton, Arthur L. III (September 1997) Developing a Standard Unit-Level Object
Model, MS Thesis, Department of Operations Research, Naval Postgraduate School.

B-1

APPENDIX B

B-2

THIS PAGE INTENTIONALLY LEFT BLANK.

B-3

WARSIM 2000 Crosswalk with the OMSC Object Model Standard

26 Feb 98

Sean MacKinnon
National Simulation Center

(mackinns@leav-emh1.army.mil)

Kevin Gipson
National Simulation Center

(gipsonk@leav-emh1.army.mil)

Background

The OOA approach chosen by the WARSIM IDT closely follows the Rumbaugh OMT
methodology. The WARSIM IDT extracted nouns and noun phrases from the Operation
Requirements Document (ORD) to identify the object classes required within WARSIM
and to establish traceability back to user requirements. A simplified model of this
process is illustrated in Figure 1. This approach drove the IDT away from the
development of a functionally oriented class structure, therefore, a lot of differences
have been noted between the two unit models. As an example, the WARSIM unit
model does not contain functional classes such as Attrition, Geometry, Logistics, etc.
Because of the fundamentally different OOA approaches applied, these functions are
represented within the WARSIM models by attributes and methods. We have
attempted to create abridged representations of both the WARSIM Equipment and Unit
models so that a visual comparison could easily be made. The following sections
highlight some of the differences between the WARSIM and OMSC object models.

Platform Model Crosswalk

There appears to be about an 85 percent or better correspondence between the two
object models. The WARSIM Equipment Model contains all the components of the
OMSC standard except for the Logistics and Maintenance classes. The WARSIM
Equipment Model represents logistics and maintenance as attributes and methods. In
addition, the WARSIM Equipment Model contains a Simulated Physical Thing class.
The WARSIM Team developed this abstract class as a way of capturing the operations
and attributes for any simulated entity on the battlefield that has a state and is subject to
detection and attrition. Figure 2 and Table 1 are provided for visual comparison
between the two models.

B-4

Unit Model Crosswalk

As previously stated, the WARSIM team avoided developing class structures based on
functionality. This fundamental difference in the OOA approach made the comparative
crosswalk difficult. Figure 3 and Table 2 show the correspondence between the OMSC
and WARSIM unit models. About 20 percent or less of the items are the same for each
unit model. However, all OMSC unit model items are represented within the WARSIM
unit model. The most notable differences are that the Equipment model takes care of
attrition and the WARSIM C2 processes shown in Figures 4 and 5. Table 3 provides
some definitions for the WARSIM classes. The below sections provide specific
comments on the OMSC unit model.

Unit Class:

There is some concern over the use of the term “sides”. This may inadvertently force us
into the traditional red Vs blue way of thinking. Conversely, in the WARSIM model an
attribute of alliance has been created to more accurately depict the real-world (we for
alliances based upon common interests and goals). It appears that posture is a term
used for simulation convenience for abstracting mission and Unit State. There is
nothing in doctrine corresponding to posture. A mission is a large complex data
structure. If mission is expected to be an enumerated value in this model then objects
are needed to describe at least a rudimentary plan. An “executeMission()” is needed.
In WARSIM attrition will not be determined by Unit, rather the results of combat at the
platform level (WARSIM will keep track of platform location and movement as part of a
formation) will be reported to Unit as damage occurs. An assessment process in Unit
will maintain unit composition and status. So the “determineAttrition” method would not
be used. Also, WARSIM uses heading versus MvmtDirection.

SystemGroup Class:

Within the WARSIM simulation we may have unit instances without Systems groups.
Although units are composed of systems, WARSIM will model equipment separately
from their units to provide additional composibility. This is different approach from the
OMSC unit model.

Geometry Class:

WARSIM uses the term formation rather than shape. Within the WARSIM object model,
formation is an attribute of the Unit class. Again for composibility reasons and based on
the OOA approach used, WARSIM does not have a functional class like geometry.
Within WARSIM, such a class might bring about a specific implementation versus being
a more general representation.

B-5

C2 Class:

WARSIM has a very detailed outline for the C2 process as illustrated in Figure 4 which
can be traced to the doctrinal military decision making process. The OMSC Unit model
contains only doC2.

Attrition Class:

WARSIM will use attrition methods which will be executed by equipment interactions
and will be maintained as part of the Equipment model.

Logistics Class:

This is handled by AEQ_Equipment.

Communications Class:

This is handled through SMCO.

Conclusion

Although there is a good amount of similarity between the OMSC Platform model and
the WARSIM Equipment model, the approaches used to develop unit object models are
fundamentally different. This is not to say that one approach is better than the other,
rather, the WARSIM focus on satisfying training requirement and the JSIMS Enterprise
influence have driven the development of WARSIM object models.

Recommendation

The WARSIM IDT has expressed interest in getting involved in the OMSC process to
develop Army M&S community standards. Recommend that the OMSC contact the
WARSIM IDT and possibly schedule a future meeting in Orlando. This would provide
an opportunity for the WARSIM IDT to share insight into their overall development
process and the thought behind their current object models.

B-6

Operational Requirements
Document (ORD)

Systems Specifications (SS)

User

Contractor

Requirements Object Model

Figure 1

1. Writes ORD

2. Gives to contractor
as requirements

3. Contractor writes SS

4. SS provides indication of
contractor understanding of
requirements

Platform_Component

Supply

Equipment_Platform

Personnel_Platform

Communications_Equipment Weapon

Movement_Platform Cargo_Container Sensor

Equipment

Simulated_Physical_Thing

Life_Form_Platform

Animal_Platform

Power_Supply Mission_Specific_Devices

Computer_System

Platform

Type
Status

Location
Side

Assess_Damage

Sensor

Max_Rnd
Orientation

Contacts
Activate

Deactivate

Weapon

Max_Rng
Load
Aim
Fire

Move

Velocity
Change_
Velocity
Move_To

Logistics

Receive

Supply

Rmn_Cap
Total_Cap
Qty_on_Hd

Expend

Crew

Quantity

Maint

Commo

Get_Net
Set_Not

Snd_Msg
Rec_Msg

Carrier

Load
Unload

Rmn_Cap
Tot_Cap

Qty_on_Hd

Plat Frm

Frm Comp

Figure 2

B-7

AUN_Simulated_Unit

Unit Name
Alliance
Echelon

Effectiveness Status
Current Location

Mission
Parent Unit

Superior Unit
Support Units

Supporting Units

AUN_Unit_Organization

AUN_SMCO

AUN_Headquarters_Unit
Subordinate Unit

AUN_Unit_Command_Node
Equipment List
Personnel List

Unit

getLocation()
getSpeed()

getMvmtDirection()
getID()

getSide()
getPosture()
getStatus()
getMission

getEchelon()
move()
look()

determineAction()

SystemGroup

getQty()
acceptLoses()
acceptGains()

Logistics

receive()

Communications

getNet()
setNet()

sendMessage()
receiveMessage()

Geometry

getShape()
getOrientation()
getLocation()

Attrition

causeAttrition()

C2

doC2()

Platform

Maintenance Supply

getRemainingCapacity()
getTotalCapacity
getQtyOnHand

expend()

0..1

1

1..*

0..1

0..* 0..* 0..*

Figure 3

AUN_C2_Resource

AUN_Unit_Behavior

Preconditions
During Conditions

Post Conditions
Entry Criteria
Exit Criteria

Inputs
Outputs

Create()
Update_Task_Info()

Plan()
Execute()
Suspend()
Resume()

Terminate()

AUN_Fundamental_Behavior

AUN_C2_BehaviorAUN_Physical_Behavior

AUN_Military_Behavior

Script List
Load_Behavior
Select_Script

AUN_Behavior_Script

AUN_Weather_MapAUN_Terrain_Map

AUN_SMCO_Equipment_Data

Figure 4

B-8

AUN_Unit

AUN_C2_Resource

AUN_Simulated_Unit

Common Modeling Framework
{Provided by JSIMS}

AUN_World_ModelAUN_Agent

AUN_Unit_HCI

AUN_SMCO

AUN_C2_Product

Figure 5

B-9

Comparison of Platform Models – Table 1
OMSC WARSIM

Platform Equipment_Platform
Platform Component Platform-Component
Logistics
Maintenance

Attributes and Methods

Supply Supply
Carrier Cargo-Container
Communications Communications-Equipment
Crew Personnel-Platform
Movement
PlatformFrame
FrameComponent

Movement-Platform

Sensor Sensor
Weapon Weapon

Comparison of Unit Models – Table 2
OMSC WARSIM

Unit AUN_Simulated_Unit
GetID() Unit Name
GetSide() Alliance
GetEchelon() Echelon
GetStatus() Effectiveness Status
GetLocation() Current Location
GetMission() Mission
GetSpeed()
GetMvmtDirection()
GetPosture()
DetermineAction()

AUN_C2_Behavior (see Figure 4 for
details about organization)

Move() AUN_Physical_Behavior (see Figure 4
for details about organization)

Datalook() AUN_SMCO_Equipment_Data passes
info to AUN_SMCO

B-10

Comparison of Unit Models – Table 2 Cont.
OMSC WARSIM

SystemGroup
GetQty()
AcceptLoses()
AcceptGains()

AUN_Unit_Command_Node

Platform AUN_SMCO

Geometry
GetShape()
GetOrientation()
GetLocation()

AUN_C2_Behavior

C2
DoC2()

AUN_C2_Resource

Attrition
CauseAttrition()

AEQ_Equipment sends info to
AUN_SMCO_Equipment_Data

Logistics
Receive()

AEQ_Equipment

Maintenance AEQ_Equipment

Supply
GetRemainingCapacity()
GetTotalCapacity()
GetQtyOnHand()
Expend()

AEQ_Equipment

Communications
GetNet()
SetNet()
SendMessage()
ReceiveMessage()

AUN_SMCO

B-11

Definitions - Table 3
AEQ_Equipment Subsystem that maintains equipment

and send information about equipment
to AUN_SMCO_Equipment_Data.

AUN_C2_Behavior C2 fundamental behaviors are the
atomic cognitive behaviors. The
military decision making process is
implemented through a combination of
C2 fundamental behaviors.

AUN_Physical_Behavior Physical fundamental behaviors have
their effects in the equipment csci. All
physical action of a unit occurs through
physical fundamental behaviors.

AUN_Unit_Command_Node This class represents a group of
equipment and personnel at the lowest
modeled echelon level that functions,
and is controlled, as an atomic
element. This means that the unit will
behave as a single entity. For
example, all of the tanks and their
crews of a tank platoon will move
together in a single formation.

AUN_Simulated_Unit Unit class
AUN_SMCO Unit command nodes have a SMCO. A

unit command node’s SMCO
represents the minds of all the unit
command node’s personnel. Unit
Command Node’s have a
specialization class called
Headquarters Unit. A headquarters
unit’s SMCO not only directs the
actions of its own physical objects, but
also commands and monitors
subordinate headquarters units via
orders and reports.

AUN_SMCO_Equipment_Data Contains information about the
equipment.

Simulated_Physical_Thing This object class contains the
operations and attributes for any
simulated entity that has a state and is
subject to detection and attrition.

B-12

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-4

4 Director
U.S. Army Model and Simulation Office
ATTN: (Mr. Vern Bettencourt)

(Mr. Richard Maruyama)
(LTC Donald Timian)
(MAJ Curt Doescher)

Crystal Gateway North, Suite 503E
1111 Jefferson Davis Highway
Arlington, VA 22202

1 Deputy Under Secretary of the Army for Operations Research
ATTN: SAUS-OR (Mr. Walter W. Hollis)
Room 2E660
102 Army Pentagon
Washington, DC 20310-0102

2 Deputy Assistant Secretary for Army for Research, Development
and Acquisition

ATTN: SARD-ZD (Dr. Herbert Fallin, Jr.)
(COL Lavine)

Room 2E673
102 Army Pentagon
Washington, DC 20310-0103

2 Director
U.S. Army Concepts Analysis Agency
ATTN: CSCA-OS (Mr. Wallace Chandler)

(Mr. John Sheperd)
8120 Woodmont Avenue
Bethesda, MD 20814-2797

2 Director
WARSIM
National Simulation Center
ATTN: ATZL-NSC-W (Ms. Annette Ratzenberger)

(Sean MacKinnon)
410 Kearney Avenue
Fort Leavenworth, KS 66027-1306

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-5

2 Director
U.S. Army TRADOC Analysis Center-FLVN
ATTN: ATRC-FM (Mr. Kent Pickett)

(Mr. Mike Hannon)
ATTN: ATRC-TD (Dave Loental)
255 Sedgwick Avenue
Fort Leavenworth, KS 66027-2345

3 Director
U.S. Army TRADOC Analysis Center-WSMR
ATTN: ATRC-WE (Ms. Donna Vargas)

(Mr. Carrol Denny)
(Mr. Chad Mullis)

Bldg 1401
White Sands Missile Range, NM 88002-5502

1 Commander
U.S. Army TRADOC Analysis Center-Montery
ATTN: MAJ Leroy Jackson
PO Box 8692
Montery, CA 93940

1 Commander
U.S. Army Simulation, Instrumentation, and Training Command
ATTN: (Brian Saute)
12350 Research Parkway
Orlando, FL 32826-3276

1 Commander
U.S. Army Medical Department Center & School
ATTN: MCCS-FF (Ray Devore)
1400 East Grayson
Fort Sam Houston, TX 78234-6175

1 Charlie Leake
JWARS Office
1555 Wilson Blvd
Arlington, VA 22209

1 Tom Shook
DMSTTIAC
203 Environs Road
Sterling, VA 20165-5805

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-6

1 Commandant
USAJFKSWCS
ATTN: AOJK-DT-CD (Dean Rose)
Ft Bragg, NC 28307-5000

10 Commander
US Army Aviation Center
ATTN: ATZQ-TDS-W (Rarick)
Ft Rucker, AL 36362-5263

1 CPT David Dinger
Bldg. 5G, Room 303
DCSSA, HQ TRADOC
Fort Monroe, VA 23651

10 Director
U.S. Army Materiel Systems Analysis Activity
392 Hopkins Road
ATTN: AMXSY-C

AMXSY-CS (Alan Dinsmore, Brad Bradley)
AMXSY-J (Pete Rigano)
AMXSY-DD (3 cys)

Aberdeen Proving Ground, MD 21005-5071

1 Assistant Secretary of the Army for Research,
Development, and Acquisition
ATTN: SARD-DO (Ms. Ellen Purdy)
2511 Jefferson Davis Highway
Arlington, VA 22202-3911

1 Commander
Headquarters
U.S. Army Corps of Engineers
Director of Research and Development
ATTN: CERD-M (Mr. Jerry Lundien)
20 Massachusetts Avenue, NW
Washington, DC 20312-1000

1 Commander
U.S. Army Opertional Test and Evaluation Command
ATTN: CSTE-M (Ms. Sarah Wilson)
4501 Ford Avenue
Alexandria, VA 22302-1458

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-7

1 Director
U.S. Army Cost and Economic Analysis Center
ATTN: SFFM-CA-PA (Mr. Steve Pawlow)
5611 Columbia Pike
Falls Church, VA 22041-5050

1 Director
U.S. Army Concepts Analysis Agency
ATTN: CSCA-OS (Mr. Gerry Cooper)
8120 Woodmont Avenue
Bethesda, MD 20814-2797

2 Commander, DCSSA
US Army Training and Doctrine Command
ATTN: ATAN-SM (Mr. Carson/Angela Winter)
Fort Monroe, VA 23651-5143

1 Commander, U.S. Army Material Command
ATTN: AMCRDA-TL (Mr. Ken Welker)
5001 Eisenhower Ave
Alexandria, VA 22333-0001

1 Commander
US Army Space and Missile Defense Command
ATTN: CSSD-BL-SC (Mr. Troy, Street)
PO Box 1500
Huntsville, AL 35807

1 Commandant, US Army War Co]lege
ATTN: AWC-AW (COL Pat Slattery)
Carlisle Barracks
Carlisle, PA 17013-5050

1 Chief of Army Reserves
ATTN: DAAR-PAE (CPT Ward Litzenberg)
Room ID416, Pentagon
Washington, DC 20310-2400

1 Director
U.S. Army Logistics Integration Agency
ATTN: LOSA-CD (Mr. Mike Rybacki)
54 M Avenue, Suite 4
New Cumberland, PA 17070-5007

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-8

1 Commander
U.S. Army Signal Command
ATTN: AFSC-PLE-AM (Dr. Leon Spencer)
Fort Huachuca, AZ 85613-5000

1 Commander
U.S Army Forces Command
ATTN: AFOP-PLA (LTC Sidney Lewis)
1777 Hardee Avenue, S.W.
Fort McPherson, GA 30330-6000

1 Deputy Chief of Staff for Intelligence
ATTN: DAMI-IFT(Ms-Marilyn,Macklin)
Room 9302, Presidential Tower
2511 Jefferson Davis Highway
Arlington, VA 22202

1 Commander
U.S. Army Research Institute for the Behavioral and
 Social Sciences
ATTN: PERI-II (Dr. Philip Gillis)
12350 Research Parkway
Orlando, FL 32826

1 Office of the Chief of Staff, Army
Progam Analysis & Evaluation Directorate
ATTN: DACS-DPM (LTC Mike Clark)
Room 3C719, Pentagon
Washington, DC 20310

1 Deputy Chief of Staff for Personnel
ATTN: DAPE-MR (Dr. Robert Holz)
Room 2C733, Pentagon
Washington, DC 20310

1 Chief, National Guard Bureau
ATTN: NGB-ARO-TS (MAJ Gary Harber)
111 South George Mason Drive
Arlington, VA 22204-1382

1 Army Digitization Office
ATTN: DAMO-ADO (Ms. Susan Wright)
400 Army, Pentagon
Washington, DC 20301

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-9

1 Military Traffic Management Command
Transportation Engineering Agency (MTMCTEA)
ATM: MTTE-SIM (Mr. Melvin Sutton)
720 Thimble Shoals Boulevard, Suite 130
Newport News, VA 23606

1 Commander-in-Chief
U.S. Army Europe and 7th Army
ATTN: AEAGC-TS-F (LTC Howard Lee)
Unit: 28130
APO AE 09114

1 Commander
HQ, USARPAC
ATTN: APOP-PL (Mr. Bob Deryke)
Fort Shafter, HI 96858-5100

1 TRAC-WSMR
ATTN: ATRC-WB (Dave Dixon)
WSMR, NM 88002-5502

1 Commander
USASTRICOM
ATTN: AMSTI-EC (Wesley Milks)
12350 Research Parkway
Orlando, FL 32826-3276

Commander
USA Signal Center and Fort Gordon
ATTN: DCD. CAD, M&S Br (Burt Kunkel)
Fort Gordon, GA 30905-5090

1 Director
USA Research Laboratory
ATTN: AMSRL-IS-EW (Rick Shirkley)
WSMR, NM 88002-5501

1 PM-WARSIM
USA STRICOM
ATTN: MAJ Frank Rhinesmith
12350 Research Parkway
Orlando, FL 32826

1 USA CASCOM
ATTN: ATCL-CAT (Ron Fischer)
Fort Lee, VA 23801-6000

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-10

1 Director
USACAA
ATTN: CSCA-MD (Julie Allison)
8120 Woodmont Avenue
Bethesda, MD 20814-2797

1 Director
USAEWES
ATTN: CEWES-GM-K (Niki Deliman)
3909 Halls Ferry Road
Vicksburg, MS 39181-6199

1 TRAC
ATTN: ATRC-FM (Pam Blechinger)
255 Sedgewick Avenue
Fort Leavenworth, KS 66027-1306

1 USATEC
ATTN: CETEC-TP (Ken Barnette)
7701 Telegraph Road
Alexandria, VA 22315

1 TPIO for Synthetic Environment
National Simulation Center
ATTN: MAJ Mike Staver
410 Kearney Avenue’
Fort Leavenworth, KS 66027-1306

7 Defense Technical Information Center
8725 John J. Kingman Road, STE 0944
Fort Belvoir, VA 22060-6218

1 TRAC
ATTN: ATRC-FZ (Larry Cantwell)
255 Sedgwick Avenue
Fort Leavenworth, KS 66027-2345

1 Director
Information Systems for Command, Control,
 Communications, & Computers
ATTN: SAIS-PAA-S (LTC Craig Cromwell)
Room 1C634, Pentagon
Washington, DC 20310

APPENDIX C – DISTRIBUTION LIST (Continued)

No. of Copies Organization

C-11

1 Deputy Chief of Staff for Operations and Plans
ATTN: DAMO-ZD (MAJ Bruce Simpson)
Room 3A538, Pentagon
Washington, DC 20310-0400

